Multi-scale Jump and Volatility Analysis for High-Frequency Financial Data
نویسندگان
چکیده
The wide availability of high-frequency data for many financial instruments stimulates an upsurge interest in statistical research on the estimation of volatility. Jump-diffusion processes observed with market microstructure noise are frequently used to model high-frequency financial data. Yet, existing methods are developed for either noisy data from a continuous diffusion price model or data from a jump-diffusion price model without noise. We propose methods to cope with both jumps in the price and market microstructure noise in the observed data. They allow us to estimate both integrated volatility and jump variation from the data sampled from jump-diffusion price processes, contaminated with the market microstructure noise. Our approach is to first remove jumps from the data and then apply noise-resistant methods to estimate the integrated volatility. The asymptotic analysis and the simulation study reveal that the proposed wavelet methods can successfully remove the jumps in the price processes and the integrated volatility can be estimated as accurately as in the case with no presence of jumps in the price processes. In addition, they have outstanding statistical efficiency. The methods are illustrated by applications to two high-frequency exchange rate data sets. Jianqing Fan is Frederick Moore’18 Professor of Finance, Department of Operation Research and Financial Engineering, Princeton University, Princeton, NJ 08544. Yazhen Wang is Professor, Department of Statistics, University of Connecticut, Storrs, CT 06269. Fan’s research was partially supported by the NSF grant DMS-0532370 and Wang’s research was partially supported by the NSF grant DMS-0504323. The authors thank the editor, associate editor, and two anonymous referees for stimulating comments and suggestions, which led to significant improvements in both substance and the presentation of the paper.
منابع مشابه
Realized Volatility in Noisy Prices: a MSRV approach
Volatility is the primary measure of risk in modern finance and volatility estimation and inference has attracted substantial attention in the recent financial econometric literature, especially in high-frequency analyses. High-frequency prices carry a significant amount of noise. Therefore, there are two volatility components embedded in the returns constructed using high frequency prices: the...
متن کاملAnalysis of Realized Volatility in Tehran Stock Exchange using Heterogeneous Autoregressive Models Approach
Objective: The present study aims atinvestigating the behavior of realized volatility for high-frequency data of Tehran Stock Index from April28th, 2012 to August 8th, 2018. Methods: Three different types of HAR models including of HAR-RV-CJ, HAR-RV and HAR-RVJ were used to analyze the Realized Volatility. Results: The obtained results of three diverse models revealed that the estimated Reali...
متن کاملHeterogeneous autoregressive model with structural break using nearest neighbor truncation volatility estimators for DAX
High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhanc...
متن کاملJump Variation Estimation with Noisy High Frequency Financial Data via Wavelets
This paper develops a method to improve the estimation of jump variation using high frequency data with the existence of market microstructure noises. Accurate estimation of jump variation is in high demand, as it is an important component of volatility in finance for portfolio allocation, derivative pricing and risk management. The method has a two-step procedure with detection and estimation....
متن کاملEconometric Analysis of Jump-Driven Stochastic Volatility Models
This paper introduces and studies the econometric properties of a general new class of models, which I refer to as jump-driven stochastic volatility models, in which the volatility is a moving average of past jumps. I focus attention on two particular semiparametric classes of jump-driven stochastic volatility models. In the first the price has a continuous component with time-varying volatilit...
متن کامل